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_NALYSIS OF LAMINATED COMPOSITE PLATES USING HYBRID-STRESS ELEMENTS

Deng Liangbo

Summary
Based on the modified complementary energy principle,

the paper describes a hybrid-stress rectangular flexural

element suitable for characteristics of laminated fiber

composite plates. This element can take into account the

effects of transverse shear deformation and local warping.

In the dynamic analysis, the interior element displacements

are assumed to be compatible with the boundary displace-

ments. The element has the characteristics of fewer

degrees of freedom, convenience in application, and high

accuracy in numerical calculations. /

I. Introduction

When applying the method of finite elements to analyze lamina-

ted plates made of composites, not only should transverse shear

deformations be considered, but also the local warping effect. In

this respect, the hybrid-stress finite elements method has unique

advantages. When constituting elements in [1], the interlaminar

displacement of nodal points was taken as a degree of freedom.

Hence, the number of degrees of freedom of an element will rise

with an increase in the number of layers, thus incurring diffi-

culties in numerical calculations, especially in multilaminated

plates. An element is proposed in [2]; only a set of stress

parameters is assumed in the element interior, and a hypothesis
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of YNS theory (hypothesis of rectilinear normal line) is applied

on the element boundary, therefore the local warping effect can not

be taken into account. With the foregoing in mind, the author

conceptualizes the title element; the hypothesis of YNS theory is

adopted for the element boundary, and stress parameters are assumed

layer by layer in the element interior. Hence, the element can take

into account both the effect of transverse shearing deformation and

the local warping effect with fewer degrees of freedom.

II. Theory

In the analysis of laminated plates, the modified arbitrary

function of the rest energy is:

.rM T [s a~ H'' v - ' )~df v n , u ' i ' d s +
d (1)

+ f sUi+ ,i ' ds

In the equation,
{-i W is the stress vector of the i-th subzone (i-th layer);

{s } is the elasticity mdtrix of the i-th subzone;

{u W is the boundary displacement vector of the i-th subzone;

{pi } is the boundary force vector of the i-th subzone;

f-(U) is the assigned boundary force vector of the i-th

subzone;

;Vni is all boundary avni=Suni+S~ni+Sni of the i-th subzone

of the n-th element;

Vni is the volume of the i-th subzone of the n-th element;

Srni is the delimited boundary of the i-th subzone boundary

force of the n-th element;

Su ni is the delimited boundary in terms of displacements;

and S ni is the boundary adjacent to other elements.

When one applies the arbitrary function (1), the assumed

stress vector should satisfy the homogeneous equilibrium equation

2



in each subzone. At the boundary SUni , {u U ) }={u i ) I should be
-Ci)

satisfied; in the equation, {u } is the known displacement vector

at the boundary.

We assume that the stress field of each layer is:

a (i) ) = [A' i'3{f3 j
'  (2)

In the equation, [A i) ] is the coefficient matrix of stress param-

eters; this is a function of x, y and z. {S(i) } is the stress

parameter of the i-th layer.

In terms of the stress parameter, the unit boundary force vec-

tor can be expressed as:

(P Tj } -ER () 30 (3)

In the equation, [R U ) ] is constituted with the boundary value of

the matrix [A U ) ] in satisfying the boundary force equation P

=-. .n..
1J 3

We assume that the boundary displacement of the i-th layer is:

{u i) } = EL T J{bi } (4)

In the equation, f6 (i) is the nodal point displacement (in the

broad sense) of the i-th layer. The boundary displacement field

(4) should satisfy the displacement compatibility conditions

among elements.

If we substitute Eqs. (2), (3) and (4) into Eq. (1), then we

obtain:

zr'c = (I{ e1T[T]{'} - { }[G']{e} + {Q 0 }T{e) (5)

where [He], [Ge and {Q are combined, respectively, according to

the specified sites by:
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[H i) ] = f [A ' ]T[S (Pi ][A 'i' ]dv

[G [Ri, -][ i : vni"ds

Q j }T [Sji ,i, }T[L 'i) Ids

3e} Iand {5eI are stress parameters and nodal point displacement

vector (in the broad sense) of the entire element, and combined,

respectively, with { (i)} and {6(i)} (i=l, 2, ... , m).

Stresses , a and a should continue among layers; thisxz yz z
continuation condition can be expressed as:

LaZ Oy a ' ' J ' =[O , 0]O
"~x1  ,i' , °' 1 i )-]- 3. , 0 , 0-. [ 3O 0 (6)

0~( 1; , 1 + , ) a'",i (i) O~(,(6 )

L xz
'  

17 •( cx I YZ ,, a

We substitute Eq. (2) into (6); this continuation condition

can be expressed with the stress parameter as:

EBJ{(e} = ( 0 } (7)

Using Lagrange's operator on Eq. (7) and introducing into

arbitrary function (5), then the following equations are obtained

through differentiation and rearrangement:

7mc 2 K ( 6 - 0rQ e) (8)

e) = ([H ]- [Ge]- [H e- I[B]T([B][He]- [B]T)- ICB][H e - [Ge]){ be} (9)

In the equations,

[K 0] = [Ge]LHe] '[G] - [Ge]He] - '[B([B]]He ICB] T- I[B]LHe]-'[Ge]

This is apparent from the above-mentioned deduction process.

Since stress (a i } is different for each layer, and the elasti-

city matrix [s(i) ] of each layer is generally different, therefore

the stress field { i'}=[s(i']{&ai'} of each layer d ifcrs layer by

layer. Based on geometric equations, it is known that there are
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different variation (in terms of coordinates) equations for the dis-

placement of each layer with the exception of transverse displace-

ment w; this is the different function of the coordinates. Hence,

the post-deformation normal line is partitioned on different seg-

ments according to the layer. This element can be used to take into

account the local warping effect.

On the element boundary, according to the hypothesis of YNS

theory, we have:

: q (10)

where I'qe, is the nodal point displacement (in the broad sense) at

the midplane of the laminated plate.

Substituting Eq. (10) into (8), we obtain:
T

'CMC =  (I { qe}T[Ke]{qe }T-qQ }  (ll

In the equation, K J=[WTKZW is a single-element rigidity

matrix: {Qe)={Q 0}T[W] is the single-element nodal point as vector.

From dynamic analysis, the modified variation principle is:

£CM M[ {U() 7 (i) 6) v 1 T ji (j }v

{p j T Tds + f say{ P p }dT) r t (12) dd
(i)2

where u W is the mass density of the i-th layer; {u I } is the

derivative with respect to time of the internal displacement vec-

tor of the i-th layer.

In Eq. (12), in principle the internal displacement field

fu } and single-element boundary displacement field can be inde-

pendently assumed. However, for convenience the paper adopts the
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internal displacement field compatible with the boundary displace-

ment field. We assume that the internal displacement field is:

{u1 
' ]. = ' :i (13)

Substituting Eqs. (2), (3), (4) and (13) into Eq. (12), we

obtain the following after rearrangement:

t q( {q} NV ' q I - -f' (qe}[Ke]{qe } )dt

IMD = f '-2(14)

In the equation, [Me] is the mass matrix of a single element and is

composed of the mass matrices of all the layers. When the free

vibration problem is considered, no load item appears in Eq. (14).

IM I: I = L EN i ]TEN 'P 'dv

From Eq. (14) a characteristic equation with the intrinsic

property of power can be derived:

(CK]- a2CM) q = 0 (15)

In the equation, [K] is the overall rigidity matrix; [M] is the

overall mass matrix.

III. Hypotheses of Field Variates

(1) In a single element, the stress field hypothesis of

each layer is:

a .'" )-~ + 0 i) X + 0 i) y + (io z + '(i' x z + Y y z

x + x+ Y + z + xz +1 yz

(16)
OY =- 0 i z YiO-T +0 X 2 0 

) 
°

o '"i = Q) B 0i ,i z 1M ' i
a, z-B z )+

= 0
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In the equation, z is the distance from a point in each layer to

the midplane of that layer. Equation (16) satisfies the stress

homogeneous equilibrium equation.

(2) The boundary displacement field of each layer in a

single element:

We take displacements u, v and w along the interlayer direc-

tions x, y and z, considered as the nodal point displacements (as

in Fig. 1) in the broad sense. Here, the author and his colleagues

assume that w is a constant along the entire thickness direction

of the single element in order to be consistent with :z=0. For

boundary AB, the equation expressing boundary displacement is:

" + U Q, X 1 U + u.6) X
UA = + U )(i- + -)+ (us + )+

Sa aZ~ . . z

vAS =  
1" +vb )(I---)+-(v i +v ( + i [ (  (17)

- u1' )(1- a +( - yi' )- i]

w A B = W 1 0 - ) + W 2' - Wi(1- + W, -aa a

In the equation, h U ) is the thickness of the i-th layer. Displace-

ments of other boundaries can be written out following the previous

line of reasoning.

(3) Transformation matrix [W]:

We take four corner points at the geometric midplane (of the

laminated plate) as nodal points; there are five degrees of free-

dom, three displacement degrees of freedom (u, v and w), and two

degrees of freedom of the angle of rotation (namely the angle of

rotation X dcound the x-axis and the angle of rotation 6 aroundx y

the y-axis) for each nodal point, as:
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= U, + loxy

(18)

In the equation, 1i is the distance from the point (to be solved)

of nodal point displacement to the geometric midplane. The other

nodal point displacements of each layer in the broad sense can be

similarly expressed in terms of the nodal point displacement on

the geometric midplane. From Eq. (18), the transformation matrix

[W] can be formed.

Fig. 1. Nodal point displacement.

(4) Hypothesis of internal displacement field:

a b ab a b ab

+ ( a _ -_ aub u , + x --- +r hi) +
xy a+ az a+h)Oya

b ab b a
(19)

V J iD = (I- x -- !)-V + - +y xy (z + xy0.
a ab +  a bab - z i OxI
x x )v +(x xyxy y

+(X-- XY( - ab )(z+hi)O,+ ab + b hi)@.,
a ab a ab )z+)0.+ab ' ab~

8



+ -)v '+( b-- +)(z(
+J

X V XV XV

a ab a a b a b b b ab )

where hi is the distance from the midplane of the i-th layer to

the geometric midplane of the plate. It can be proved that Eq.
(19) is compatible with the displacement field (of each boundary)

at the boundary.

IV. Numerical Results

(1) Flexural stress analysis of simply supported rectangular
laminated plate [00/900/00]

The plate dimensions are 3axa; the bearing load is
~q.S.znl 3a • The origin of the corresponding coordinate

system is taken at a corner point of the plate; the y-axis extends

along the long side; the x-axis along the short side; and the
ratio between plate width and plate thickness is (a/h)=10. In
[3], Pagano gives an exact solution for this problem. In [1]
a finite element analysis is made for this problem; the numerical
results and the calculated results in the paper are listed in

Table 1.

Table 1. Stress and deflection of laminated plate.
kc) ..

(a) azz GCY
(a'ah h 0)(3o

2 2 22 2 62 2 2 22

(d) C I t A ,, 2 x 1 54 0.828 ±-0.0462 0.287 0.0104 ±0.0136 1.0131

(e; 4. L& 2 X 1 30 t±0.834 t0.0467 0.283 0.0101 ±0.0139 1.0133

( ) $'] . 4 X 2 135 ±0.741 i0.043 0.386 0.0139 ±0.0126 0.9427

Ce) AA-$Jt. 4 x 2 75 0.744 _.0440 0.383 0,0136 0.0128 0.9430

A-) $, 8 X 4 405 ±0.714 0. 0426 0.415 0.0150 -0.0122 0.9255

( S) i.. 8 x 4 225 ±0.737 ±0.0428 0.413 0.0149 :0.0123 0.9260
0.726 0.0413 0.0120 0 919

C- 0725 -00435 0.420 0.0152 00123

(Key on following page.)
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Key to Table 1: (a) Method; (b) network; (c) degree of freedom;
(d) single element from [1]; (e) single element
in the paper; (f) exact solution

Table 2. Effect (H-10) of dimensionless frequency

/=Da2(p/E.h-) of square plate by la,,2r number.

( a ) Z ( b ) 4 D ( C ) :t ( s ) ( d ) 's

2 15.714 13.04 13.581

4 18.069 18.46 18.385

6 18.295 19.09 19.003

8 19.028 19.29 19.230

10 !9.074 12.38 19.351

12 1903 - 19.429

it 13.113 - 19.484

18 19.122 19.48 19.500

Key: (a) Layer number; (b) single element from [4]; (c) ref-
erence [5]; (d) this paper.

(2) Intrinsic property analysis of bias-laid laminated plate

The fiber-laying angle of the plate is [-450/450/-450/450/...];

the elastic constant of the material is
GE, 40,= 0.5,06 v=0.25.

E, -40 , EE

The boundary condition of the plate is u=w=O, Ox=0. At a,

where x=O, v=w=O, and 8 =0. At b, the dimensionless frequencyy
values of a plate with different layer numbers are listed in

Table 2.

V. Conclusion

From the above analyses and numerical calculations, the

following conclusion can be obtained: to conform to the properties

of a laminated plate, stress parameters should be assumed layer by

layer. However, at the boundary of a single element, the displace-

ment hypothesis in the YNS theory can be adopted. A single

element thus constituted can not only take into account the effect
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of shear deformation and the local warping effect, but also

involves fewer degrees of freedom of a single element.
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